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Abstract. In this exploratory study, we used Epistemic Network Analysis
(ENA) as an analytic tool to help us better understand the possible interactions
and structural connections between computational thinking and critical thinking
as elicited in an open-ended authentic problem-solving task that was solved
collaboratively. We found that, although students’ final solutions and solving
processes were qualitatively different, the structural connections found in ENA
are quite similar among all teams. We interpret this as a direct reflection of the
nature of the task, which is complex and open-ended, and therefore, allows for
multiple possible solutions. However, the underlying structure appears to be
stable, which contributes to validating the purposeful design of the activity to
elicit the construct of computational thinking. Moreover, we observed that
during the collaborative solution process, all teams made strong connections
between elements of critical thinking and computational thinking that evolved
over time. Graphs that were generated by ENA display the diversity in student
thinking, as well as a similar epistemic structure in the solution of the model-
eliciting activities. The interactions between critical thinking and computational
thinking are evident, although components of these constructs were elicited in
different ways in each team’s solution.
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1 Introduction

Important dimensions of human competence have been identified as valuable for many
centuries to achieve local and global prosperity for the common good in areas that
include: education, work, health, and other life contexts. However, what distinguishes
the recently called “21st century competencies” is the goal of deeper learning [1], to
prepare next generation of students attaining strong levels of mastery across multiple
areas of skill and knowledge. The role of education is even more critical in supporting
the preparation in these competencies, which include: problem solving, critical
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thinking, communication, collaboration, and self-management. Recently, business
leaders and researchers have joined educators in their efforts and commitment for a
broader and more diverse population to develop these competencies in ways that can be
extended and transferred to other situations beyond school to solve new problems in
multiple settings [2].

However, little is known about the epistemic nature of these 21st century compe-
tencies, how they develop, and the interactions and structural connections that exist
among them. Moreover, more needs to be learned about rich problem-solving contexts
in which these competencies emerge and develop to prepare the next generation so that
all students have the opportunity to succeed beyond school in a technology-based age
of information [3, 4].

2 Theoretical Framework: Models and Modeling Perspective,
Computational Thinking and Critical Thinking

2.1 Models and Modeling Perspective

A Models & Modeling Perspective is centered on the nature of students learning
mathematics when they interpret real-life situations and have the need to “mathema-
tize” in order to predict, describe, explain, or construct mathematically significant
systems [5]. This perspective proposes model-eliciting activities (MEAs) as authentic
open-ended collaborative tasks to be solved by groups of 3–4 students. In the way
MEAs are designed, the solution calls for a mathematical model to be used by an
identified client, or a given person who needs to solve a real-life problem [6]. In order
for the client to implement the model adequately, the students must clearly elicit their
thinking process and justify their solution. Thus, they need to describe, explain,
manipulate, or predict the behavior of the real-world system to support their solution as
the best option for the client. As in real life, there is not a single solution, but there are
optimal ways to solve the problem [6, 7].

From a Models & Modeling Perspective, models are conceptual systems embedded
in representational media and developed for a particular purpose [5]. MEAs are
designed to focus on richer, deeper and higher-order understandings of relevant con-
structs that provide the foundation for mathematical reasoning. In addition, MEAs
make learners’ thinking visible through the multiple representations students use in the
solution process as they continuously interpret and re-interpret the goals and givens in
authentic problems [7]. Thus, students’ models involve dynamic representational flu-
ency among written, spoken, constructed, and drawn media as they revise and refine
their thinking [5].

As students engage in the modeling process, they elicit their understanding of
relevant mathematical constructs, while also developing competencies that are needed
for success in solving real-life problems. Relevant competencies include critical
thinking, communication, collaboration, and self-management [4, 8, 9].
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2.2 Computational Thinking

Computational thinking (CT) is a construct that has gained much relevance especially
in the past decade as a form of literacy and a powerful skill that is needed for success
beyond school in a technology-based age of information, and which extends beyond
programming [e.g. 15, 16]. More recent conversations focus on the need to provide
access to computational thinking to all students in K-12 classroom settings, promoting
effective learning environments for students to develop and learn these foundational
conceptual tools, and extend this knowledge to other contexts in which new problems
can be solved [2, 4, 16].

Computational thinking is defined as the processes in formulating problems and
their solutions so that these can be effectively carried out by anyone, and not only by
computer scientists [17]. Computational thinking has been considered “the highest
order of problem-solving” [18] and a necessary skill that all individuals should develop
in order to thrive and become active citizens in our technology-driven world [19].

Computational thinking builds on power and limits of computing processes,
allowing students to solve problems, design systems and understand human behavior
by thinking recursively, parallel processing and recognizing virtues and dangers of any
activity [20].

In this study we use a characterization of computational thinking as a collection of
cognitive problem-solving skills that include the ability to: (a) decompose: or break a
problem down into smaller, more manageable parts; (b) recognize patterns: or finding
similarities between items; (c) abstract: or remove details to simplify a solution so that
it can be generalized; and (d) create algorithms: or automate processes by designing a
sequence of logical instructions to facilitate a solution [24]. Consistent with this
approach, computational thinking has also been associated with modeling, especially
when the focus is on abstraction as a process and a product, as when a problem calls for
the need to solutions that are reusable and generalizable to different contexts [5, 9, 21,
22].

2.3 Critical Thinking

Critical thinking (CritT) is considered an essential aspect of higher order understanding
highly regarded by different stakeholders in education, research, and industry [1, 3].
Over the past years, several frameworks have been developed to identify and analyze
critical thinking emerging from collaborative group problem solving [8, 27, 30].
Studies show that MEAs successfully supports the full process of critical thinking as
described by Dewey [31] and Ennis [28–30]. For this study, we use a framework that
has been used in previous studies to characterize critical thinking in the context of
MEAs [8], using five descriptors of the process, including:

1. Initiation: Identification of a common question or problem and discussion to ensure
that question or problem is understood by the group.

2. Exploration: All discussion which expands upon the problem or question to support
formation of a solution.

3. Solution: Positing an answer to the question or problem and the initial explanation
of that answer or solution.
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4. Judgment: All discussion where the answer or solution is debated, modified, or
tested.

5. Resolution: When the participants agree upon a final solution or answer.

2.4 Studying the Relationship Between Computational Thinking
and Critical Thinking

There are only a few studies exploring the connections between computational thinking
and critical thinking (e.g., [17, 32]). While some approaches identify similarities and
differences in the operationalization of these constructs, there is agreement that they
both emerge within problem-solving situations. However, as a field we’re still devel-
oping our understanding on an epistemic structure for computational thinking, critical
thinking, and the possible connections between these two; and more specifically, when
students engage in open-ended collaborative problem-solving activities that are
designed for all students to participate and learn.

A better understanding of the characteristics of learning environments in which
computational thinking emerges, the nature of computational thinking, and how it
relates to other foundational 21st Century conceptual tools such as critical thinking are
of utmost importance to articulate an educational plan that fosters “computational
thinking for all” [3, 18].

In this exploratory study, we propose utilizing a model-eliciting activity called the
Tic-Tac-Toe Problem that was purposefully designed to elicit computational thinking
[33] and identify whether critical thinking also emerges in students’ solution processes.
Then, we use Epistemic Network Analysis (ENA) to explore the structural relationship
between computational thinking and critical thinking as these emerge while students
solve the Tic-Tac-Toe Problem.

3 Research Questions and Rationale

We report an exploratory study guided by two research questions:

• What is the structural relationship between computational thinking and critical
thinking as both constructs emerge in the context of a genre of open-ended authentic
collaborative group tasks called model-eliciting activities (MEAs)?

• How do computational thinking and critical thinking dynamically interact and
evolve during the collaborative process, and how is this interaction characterized as
students solve the model-eliciting activity?

Although some authors have identified connections between computational think-
ing and critical thinking (e.g., [17]), there is a lack of theoretical frameworks that
explicitly describe how both constructs are connected [32]. In this study, we use ENA
[14] to identify and quantify connections between critical thinking and computational
thinking emerging while students solve a genre of open-ended collaborative group
tasks called MEAs [5]. Explicitly articulating these connections will increase our
understanding of the epistemic connections between critical thinking and computa-
tional thinking as students engage in model-eliciting activities that are purposefully
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designed for all students to participate and elicit their understanding of these relevant
constructs. Therefore, this study is an important step to provide broader access for all
students to develop these highly sought skills.

4 Modes of Inquiry

Quantitative Ethnography is a methodological approach that uses qualitative and
quantitative approaches to understand data-rich evidence about the discourse of cul-
tures [34]. It respects the insights gained by ethnography and applies the power of
statistical techniques. An ethnographer makes observations and collects rich data to
understand patterns of discourse of the culture being studied. Quantitative Ethnography
uses inferential statistical techniques to facilitate systematic interpretations to find
meaning in shared and learned patterns of values and systems of symbols (e.g., lan-
guage) [34–36].

Discourse analysis is the study of language at use in the world, where language is
viewed as socially constructed and related to situated contexts. It deals with the
interpretive processes that individuals use to give meaning in social, cultural, and
political terms [10, 11, 34]. ENA is a theory-driven technique that allows for a more
comprehensive discourse analysis of large datasets related to how learning occurs by
takings advantage of combining powerful qualitative and quantitative analytical tools
[12].

According to Shaffer & Ruis [12], an epistemic frame involves “the actions and
interactions of an individual engaged in authentic tasks” (p. 176). ENA is a method for
the analysis of cognitive networks by modeling the association between elements of
complex thinking. The connections among cognitive elements are more important than
studying those elements in isolation. ENA is used to examine the connections and uses
visualization and statistical techniques to identify patterns. It quantifies the co-
occurrence of concepts within a conversation [12, 13, 34, 36].

ENA analyzes data segmented, based on the principles of discourse analysis,
starting with lines and grouping the conversations in stanzas. Relationships are cal-
culated and depicted graphically and to look at the co-occurrence of concepts in the
conversations that students have while learning a concept.

Several studies based on Models & Modeling Perspectives have relied on discourse
analysis to study underlying meaning from students’ solutions in MEAs [10, 11]. These
studies have helped us better understand the nature of the modeling process and the
constructs students develop in their solution models, as their thinking is elicited
through multiple representations [5]. In this study, we propose that a Models &
Modeling perspective is consistent with the approach to learning proposed by epistemic
frame theory [12]. Moreover, we argue that students’ modeling processes can be
analyzed as an epistemic frame, considered as “the actions and interactions of an
individual engaged in authentic tasks” such as MEAs. Therefore, we explore ENA as a
novel theory-based approach to better understand the nature of the constructs that
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students elicit, develop, and co-develop within a problem-solving episode of a MEA. In
this way, ENA can help shed some light in better understanding the possible interac-
tions and structural connections among relevant competencies previously mentioned,
such as computational thinking and critical thinking.

5 Methods

We designed the Tic-Tac-Toe model-eliciting activity for high school students to elicit
computational thinking. In the context of the Turing Test and artificial intelligence [37],
we asked students to work in teams and create an algorithm for a computer game that
would allow the machine to never lose in the game of tic-tac-toe when playing with a
human [33]. Clear objectives in the MEA allow the students to continuously judge the
quality of their solution by fostering multiple opportunities for reflection and expla-
nation [6, 7]. These aspects facilitate application and communication of critical
thinking skills and other foundational conceptual tools as learners “select, filter,
organize, and transform information” [8].

Our participants were a group of 11 students at a Career and Technical Education
high school program in South Texas. Most students were male Hispanics and African
Americans. Students were divided into three teams (3-3-4 students, respectively) and
were given one hour to collaborative solve the Tic-Tac-Toe MEA. Each of the three
teams produced a different solution or algorithm. The three solution algorithms were
qualitatively different, and they all elicited students’ ideas related to computational
thinking and critical thinking. In this MEA, the algorithm produced is what we identify
as a model or solution (i.e., a conceptual system that is expressed using representational
systems to construct, describe, and explain behaviors of other systems).

The primary sources of data were the videorecordings of the conversations from
each team while collaboratively solving the MEA. These contain multiple sets of data
sources. During the recorded episodes, students were engaged in generating the solu-
tion for the MEA. The focus was on the participant interactions as they elicited and co-
constructed a solution that involved computational thinking and critical thinking. The
video recordings for the three teams were transcribed and time stamped.

Analytic coding methods were used for each of the three transcripts [37]. Based on
the theoretical characterization we used for each construct, two coding schemes were
used: one for critical thinking (CritT), consisting of five categories: initiation, explo-
ration, solution, judgment, and resolution; and one for computational thinking (CT),
consisting of four categories: decomposition, abstract, patterns, and algorithms. Table 1
provides the code book we used including the name of the code (construct/category),
definition of the code, and examples of the code or excerpts of the transcripts illus-
trating each category.
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Table 1. Code book containing code names, definitions, and examples.

Name Definition Examples

Initiation
(CritT)

Identification of a common
question or problem

“We have to win every time? I kind
of want to do that”

Exploration
(CritT)

All discussion which expands
upon the problem or question to
support formation of a solution

“are you talking about the
corners?”

Solution (CritT) Positing an answer to the question
or problem

“Yeah, yeah. Like you put, like
what I’d do is the one in the
middle… I always start in the
middle, and then, wherever they
make a move, that’s what corner…
this side”

Judgment
(CritT)

All discussion where the answer or
solution is debated, modified, or
tested

“… you are looking at a tie…
cause if he just put it like this… no
one is going to win… so… it just
ah… see… no one wins.”

Resolution
(CritT)

When participants agree upon a
final solution

“You start off (inaudible)… start
off here… so I think… any time,
yeah… (inaudible) doesn’t matter
cause you’d win anyways… so I
guess…(inaudible) strategy we
start in the corners… to be the
winner…”

Decomposition
(CT)

Break a problem down into smaller
parts

“see… I just went (inaudible). You
can start in the corner… it’s not…
perfect but it wins, sometimes, like
if someone knows what you’re
doing, they’ll take the corners
too… here… there you go…”

Patterns (CT) Finding similarities between items “I’d start at the corner here, these
corners”

Abstract (CT) Remove details for generalization “Well, these are all the rules… all
these rules are (inaudible) to
follow us. So this is… there's a
circle starting in every single
spot… like that's the first rule,
telling the human where to go
first.”

Algorithm (CT) Automate processes by designing a
sequence of logical instructions

“Right here. So I guess that is the
way to beat it, if they start in any
kind of corner, I guess, you could
just put it on the opposite side, that
just ruins your rhythm.”
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Two separate raters coded each transcribed line of the discourse by participant,
identifying each corresponding characteristic for computational thinking and critical
thinking and coded using a 1 if a specific characteristic in our code book was evident
and a 0 otherwise. When raters identified different codes for the same line, social
moderation was used to find an agreed-upon code.

A database was produced and configured for ENA. Lines in the transcript were
organized into stanzas, and binary coding was produced for each line of dialogue. We
defined the units of analysis as all lines of data associated with a single value of team
subsetted by participant (i.e., student).

Once coding was finalized and verified, ENA [12, 14, 34] was applied to this data
using the ENA Web Tool (version 1.7.0) [31, 39]. The ENA algorithm uses a moving
window to construct a network model for each line in the data, showing how codes in
the current line are connected to codes that occur within the recent temporal context
[40], defined as 20 lines (each line plus the 19 previous lines) within a given con-
versation. The resulting networks are aggregated for all lines for each unit of analysis in
the model. In this model, we aggregated networks using a weighted summation in
which the networks for a given line reflect square root of the product of each pair of
codes.

Our ENA model included the identified codes for critical thinking and computa-
tional thinking: Initiation, Exploration, Solution, Judgment, Resolution, Decomposi-
tion, Pattern, Abstract and Algorithm. We defined conversations as all lines of data
associated with a single value of Activity. For example, one conversation consisted of
all the lines associated with the Tic-Tac-Toe activity.

The ENA model normalized the networks for all units of analysis before they were
subjected to a dimensional reduction, which accounts for the fact that different units of
analysis may have different amounts of coded lines in the data. For the dimensional
reduction, ENA performed a singular value decomposition (SVD), projecting and
centering the data without rescaling it. This projection maximized the variance
accounted for the data in a two-dimensional orthogonal space: SVD1 and SVD2, that
we then interpreted in relation to the research questions and our analytical framework.

ENA generated mean network graphs that show the two-dimensional orthogonal
space generated by SVD1 and SVD2. We analyzed the graphs based on the strength of
the connections between nodes representing our operational definition for computa-
tional thinking (abstract, decompose, recognize patterns and create algorithms) and
critical thinking (initiation, exploration, solution, judgment, and resolution) for each of
the teams: 1, 2, and 3. We verified these interpretations by going back to the transcripts
and validating with the discourse.
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6 Results and Interpretations

Figures 1, 2 and 3 provide visual representations of the ENA which show connections
among cognitive elements of computational thinking and critical thinking, respectively
for each participating Team 1, Team 2, or Team 3. In the mean network graph showing
the representation of the shared space for the three teams simultaneously, we see that
the amount of variance explained by the variables represented in axes SVD 1 and SVD
2 is almost 55% of the total variance: 32.5% for SVD 1 and 22.4% for SVD 2. In this
section, we provide our interpretations of the ENA Models. First, we report our
interpretations of the space generated by SVD 1 and SVD 2. Then, we interpret the
ENA Models generated for Teams 1, 2, and 3 in terms of the co-occurrences of the
different characteristics of Critical Thinking and Computational Thinking.

We propose an interpretation of the structural connections between computational
thinking and critical thinking elicited during the Tic-Tac-Toe problem-solving episode
by focusing on the structure of the connections in the data as displayed in each graph.
Then, we extended our interpretation to analyze the orthogonal space of SVD 1 and
SVD 2, based on the position of each pair of coordinates or nodes corresponding to
each characteristic of computational thinking and critical thinking in this two-
dimensional space.

Fig. 1. Network graph for Team 1, showing centroids and confidence intervals.
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6.1 Comparing Graphs for Teams 1, 2 and 3

ENA was performed on the co-occurrences of each pair of components and the network
formed provides a model of the structure of these connections. Based on this ENA, we
interpret the network models as the structure of connections among the elements of

Fig. 2. Network graph for Team 2, showing centroids and confidence intervals.

Fig. 3. Network graph for Team 3, showing centroids and confidence intervals.
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computational thinking and critical thinking elicited by the students’ discourse as they
solved the Tic-Tac-Toe MEA. Thicker lines within the network represent stronger
connections, whereas thinker lines are weaker connections.

For example, the network for Team 1 (Fig. 1) builds the strongest connections
between Exploration (CritT) and Solution, and between Exploration (CritT) and Pat-
terns (CT). The connections between Exploration (CritT) and Judgment (CritT), and
between Exploration (CritT) and Resolution (CritT) are also relevant. This indicates
that as Team 1 recursively used exploration as a powerful strategy that allowed them to
concurrently test their solution, find patterns, and judge whether their proposed solution
did indeed allow the computer to win the game of Tic-Tac-Toe regardless of where the
human might place their mark. Based on the discourse used by this team, Exploration
was an important mediator for them to advance through cycles of critical thinking as
the Team articulated a solution. Exploration (CritT) seems to have driven all other
components of CritT and CT, as it had the highest frequency and connected to all other
codes. As Team 1 systematically explored different cases in the tic-tac-toe game, they
found patterns and solutions using their judgment.

In terms of the epistemic connections between critical thinking and computational
thinking for Team 1, ENA indicates that the strongest connection was between
Exploration (CritT) and Patterns (CT). This is consistent with the description in the
qualitative descriptive analysis revealing that the team used a systematic trial-and-error
approach to solving this activity. Team 1 systematically played dozens of tic-tac-toe
games, assessing multiple possibilities in an organized way that allowed them to find
patterns. For example, they began questioning whether the computer first needed to
place a mark in one of the corners, at the center edge, or in the middle. After exploring
multiple possible games, they found patterns that allowed the team to judge that a good
strategy for the computer to win is to always mark one of the corners. Exploration and
finding patters slowly generated solution strategies for the computer, and it was not
until the very end that they were able to abstract this knowledge to come up with an
algorithm for the computer to not lose the game. In subsequent analyses, we anticipate
developing an ENA trajectory to better understand the epistemic dynamic cycles over
time for each team as they solved the activity.

The network for Team 2 displayed in Fig. 2 shows the strongest connections
between Resolution (CritT) and Judgment (CritT). However, the graph shows that this
strong connection is mediated by Abstract (CT). Moreover, Abstract (CT) also has
strong connections with all other components of critical thinking, including Solution
(CritT), Resolution (CritT) and Exploration. Co-ocurrences among components of
computational thinking are not as strong, but still evident, between Abstract (CT) and
Pattern (CT). This team created several rules, or algorithms, and then tested these rules
with concrete possible scenarios in the tic-tac-toe game. In contrast with Team 1 who
had an approach from particular case-by-case to generalizing, Team 2 created more
general rules and then tested to see if they would hold under particular cases they
identified. Thus, Team 2 went from more general to particular cases, and this is
illustrated in their network model showing more connections between Abstraction
(CT) with other characteristics of critical thinking and with Patterns (CT). Moreover,
the graph also shows some weaker connections with Algorithms (CT) and other
characteristics.
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The network model for Team 3 displayed in Fig. 3 indicates that the strongest
connection was between Exploration (CritT) and Solution (CritT). However, Explo-
ration (CritT) was also connected with Abstract (CT), Decomposition (CT) and Pat-
terns (CT), which are all elements of computational thinking. Another interesting set of
connections Team 3 made, although weaker, was between Abstract (CT) and Solution
(CritT), between Abstract (CT) and Judgment (CritT), and between Abstract (CT) and
Decomposition (CT). From the network model, it appears that judgment and abstrac-
tion mediate the many co-occurrences this team made among components of critical
thinking and computational thinking.

The strategies used by Team 3 appear similar to the ones from Team 1 in that they
also went from playing many instances of the tic-tac-toe game, and using particular
cases to generalize to a solution. Early in their team activity, one of the members
proposed a winning strategy from the beginning (i.e., having the computer go first and
take a corner). However, other team members did not appear to understand that this
was a more abstract solution and they continued playing instances of the tic-tac-toe
game until they found enough patterns to arrive to the same conclusion as their peer
had suggested earlier. In this process, the students try different strategies and come up
with partial solutions which they verify and integrate to a more generalized solution at
the end of the episode.

Looking at the centroids for Teams 1, 2, and 3 in these graphs, as well as the
respective confidence intervals, we observe that the confidence intervals all over-
lap. Considering each centroid as a summary of the ENA network for the three teams,
we see that all the centroids are relatively close to each other and aligned. Both, the
closeness of the centroids and the overlap of the confidence intervals indicate that the
epistemic frames between teams is similar in the variables described by SVD 1 and
SVD 2. Although this is visually evident, we also conducted a Mann-Whitney U Test
for a pairwise mean comparison for all teams (Team 1 vs Team 2, Team 1 vs. Team 3,
and Team 2 vs. Team 3). We found no significant difference between teams.

Although it is clear from the ENA for each Team, and their respective network
models, that the three teams used different strategies in their solutions, we interpret this
statistical result as content validity of the task, that the MEA did indeed elicit students’
computational thinking and critical thinking for all teams; and that, although qualita-
tively different, there is a strong interaction between these two constructs as students
generate their solutions to the task. We also noticed that, although each team did show
evidence of eliciting computational thinking and critical thinking during the Tic-Tac-
Toe problem-solving episode, each of the three teams generated distinct concept spaces
which characterize their cognitive processes related to these two constructs.

6.2 Interpretation of SVD 1 and SVD 2

Observing the positions of the network graph nodes—and the connections they define,
we interpreted the dimensions of the projected space and describe the positions of
plotted points in the space. Therefore, in making interpretations of the underlying
constructs for SVD 1 and SVD 2, we notice the following:
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• SVD 1 shows two sets of characteristics for computational thinking and critical
thinking that are grouped and organized based on what appears to be describing a
continuum for problem solving, defined as a continuum from givens to goals [5].
For example, we observe that on one end (positive side of the axis, from greatest to
least magnitude) are: resolution (CritT); decomposition (CT), pattern (CT), and
abstract (CT) almost at the same level, solution (CritT), and judgment (CritT).
These are all characteristics that correspond to processes that students engage in
with data or other cognitive tools and resources that are generated by their own team
during the problem-solving episode as they develop their solution. On the opposite
end (negative side of the axis) are: initiation (CritT), algorithm (CT), and explo-
ration (CritT). Descriptors on this second group seem to be characteristics that
correspond to processes that students follow based on information provided directly
in the problem statement.

• SVD 2 shows two sets of characteristics for computational thinking and critical
thinking that are grouped and organized based on what appears to be a continuum
for deeper learning. [1] On the one end (negative side of the axis, from greater to
least magnitude) are: pattern (CT), algorithm (CT) at the same level as resolution
(CritT), and abstract (CT). These all seem to be characteristics that are more abstract
and transferable to different problem-solving situations beyond the context in which
the Tic-Tac-Toe MEA is embedded. On the opposite end (positive side of the axis)
are: judgment (CritT) almost at the same level as exploration (CritT), solution
(CritT), decomposition (CT), and initiation (CritT). Descriptors on this second
group seem to be characteristics that are more problem-specific and situated within
the Tic-Tac-Toe MEA and which have a more interpretive aspect from the team
members.

7 Conclusions and Next Steps

In this exploratory study, we used ENA as an analytic tool to help us better understand
the possible structural connections between computational thinking and critical
thinking as elicited in a collaborative authentic problem-solving task called the Tic-
Tac-Toe model-eliciting activity (MEA). We found that while solving this MEA, the
structural connections elicited by the three teams of students were very similar. We
interpret this as a direct reflection of the nature of the task, which is complex and open-
ended, and therefore, allows for multiple possible solutions. We found that all teams
made strong connections between critical thinking and computational thinking,
although the solution processes were qualitatively different. Nevertheless, we found
that Exploration (CritT) and Abstraction (CT) appear to be key mediating components
that facilitate connections with other characteristics of critical thinking and computa-
tional thinking as students elicit their solution models.

Graphs that were generated by ENA display the diversity in student thinking, as
well as a similar epistemic structure in the solution of the MEA. The interactions
between critical thinking and computational thinking are evident, although components
of these constructs were elicited in different ways in each team’s solution.
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This study warrants further exploration on the design of model-eliciting activities as
an efficient learning environment that elicits computational thinking and critical
thinking, and be able to better understand the nature of these two constructs, as well as
the structural connections that are generated. Moreover, this study opens future studies
to use ENA to better understand the dynamic epistemic nature of modeling cycles that
students engage in with MEAs, in which they express, test, revise, and refine a pro-
gression of preliminary solutions of possible tic-tac-toe game strategies.
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